If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-14n-7=0
a = 1; b = -14; c = -7;
Δ = b2-4ac
Δ = -142-4·1·(-7)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{14}}{2*1}=\frac{14-4\sqrt{14}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{14}}{2*1}=\frac{14+4\sqrt{14}}{2} $
| 16x2-56x=49=0 | | 8+(x-3)=-2 | | 7-2x=1.5 | | 3p+7(6-6p)=9(9-2p)-8p | | 14x=10+9x | | 3a=3a+18 | | t/4+1=2 | | 3x/(x-2)+(1/x)=4 | | 8+2x+8=13+x | | 684=z+359 | | 3-p+7p=-21 | | c-656=257 | | ((4x-1)+x+18)/2=42 | | n+389=483 | | 1-5x+8=24 | | 5x-7-7+12=39 | | (7x+28)+(5x+22)=180 | | 7s+17=3 | | k+12/3=10 | | 2=7+2p+7 | | 28=x/5+7 | | -6-8k=-6(1+7k) | | t-87=-67 | | 2x2−5x−12=0 | | 3x+5+7=48 | | 8=2n+4n | | -2+10c=18 | | 11+14u=-17 | | 19=j-68 | | 9(f+1)=72 | | 6-(7x+4)-12x=4x=17 | | 2x-5+2x-5=14 |